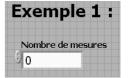


Acquisition: Les exemples d'applications:

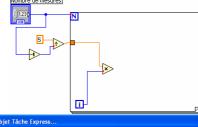
Programmation à l'aide de l'assistant


Exemple 1 : Assistant

- Nous allons générer une tension V1 qui varie de 0 à 5V.
- Cette tension augmentera d'un pas: p = 5 /(« Nbre de mesures » (défini par l'utilisateur)-1).
- On utilisera un assistant DAQmx : générer une tension

- **♣** Sur la page de démarrage, choisir Nouveau → Projet vide
- Faire Fichier → Enregistrer et donner le nom : « Exemple1 »
- Sur le Poste de travail, avec un clic droit choisir Nouveau → VI
- Un VI s'ouvre, faite Fichier → Enregistrer (ou CTRL+s) et donner le nom du programme : Gener_tension
- Projet : Exemple1.lvproj

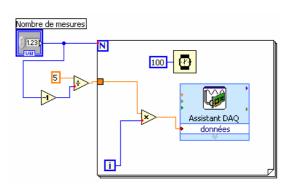
 Poste de travail
 Gener_tension.vi
 Dépendances
 Spécifications de construction
- **Sur la face avant**, ajouter une commande numérique « Nombre de mesures » en faisant un clic droit dans la catégorie Moderne → Numérique (il est implicitement du type double, il faut le convertir en entier : faire un clic droit puis représentation et choisir I32)


- ♣ Sur le diagramme, créer la boucle FOR dans Programmation → Structures
- ♣ Ajouter les opérateurs « ÷ », « -1 » et « X » dans Programmation → Numériques
- ♣ Créer une constantes = à 5 dans Programmation → Numériques (il

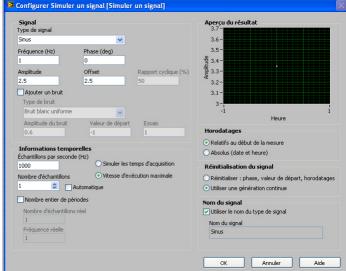
faut la transformer en double : faire un clic droit puis représentation et choisir DBL)

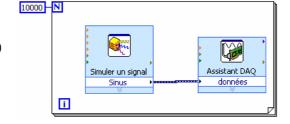
- Relier les différents éléments
- Créer le générateur de tension à l'aide de l'assistant DAQ, pour cela E/S de mesures → DAQmx-Acquisition de données → Assistant DAQ, placer l'icône dans la boucle en cliquant dans celle-ci, la fenêtre suivante s'ouvre :
- Choisir Générer des signaux puis Sortie analogique puis tension
- Choisir la sortie sur laquelle on veut générer cette tension, Ao0 par exemple.

Reste à configurer les paramètres : Tension Max : 5V, Tension Min : 0V, Unités après échelle : Volts, Configuration du terminal : RSE, Mise à l'échelle personnalisée : <Pas</p>



d'échelle> et Mode de génération : 1 échantillon (sur demande).


- ♣ Relier la sortie de la multiplication à l'entrée « données » de l'assistant.
- Enregistrer le projet.
- Brancher V1 du circuit de la diode sur l'entrée Ao0 de la carte d'acquisition.
- Tester votre programme en appuyant sur le mode « Exécution Unique » (N'oubliez pas de mettre un nombre de mesures > 0 sinon le programme va afficher un problème).Le diode s'allume progressivement.
- Si vous voulez la voir s'allumer plus lentement, rajouter dans la boucle For une tempo de 100ms à l'aide de la fonction « Attendre (ms) » dans Programmation → Informations temporelles

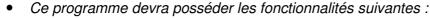


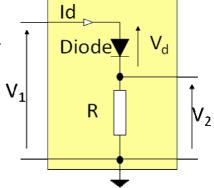
Remarque : on peut mettre par défaut une valeur différente de 0, pour cela, mettre la valeur à 100 par exemple et faire clic droit sur la commande puis Opérations sur les données → Désigner la valeur actuelle comme défaut. Si vous voulez que toutes les valeurs de la face avant deviennent celles par défaut faire Edition → Désigner les valeurs actuelles comme défaut.

- ♣ A la place de générer une tension qui croît linéairement de 0 à 5V, nous allons générer une tension sinusoïdale d'amplitude 5V, de valeur moyenne 2,5V et de fréquence 1Hz. Pour cela :
- Faire Fichiers → Nouveau VI
- ♣ Sur le diagramme, faite glisser l'Assistant DAQ du vi Gener tension.
- **♣** Créer la boucle FOR autour de l'assistant dans Programmation → Structures
- ♣ Créer une constante = à 10 000 dans Programmation → Numériques et relier là à N de la boucle FOR
- ♣ Générer la sinusoïde à l'aide de la fonction « Simuler un signal » dans Traitement du signal → Génération de Waveforms. La fenêtre suivante
 ☐ Configurer Simuler un signal [Simuler un signal]
- s'ouvre :

 Configurer :
 - Type de signal : Sinus Fréquence : 1Hz
 - o Phase: 0 deg
 - Amplitude : 2,5 (pour LabVIEW, l'amplitude correspond à la demi-amplitude que nous connaissons)
 - o Offset: 2,5
 - o Sans ajouter un bruit
 - Informations temporelles :
 - Echantillons pas seconde (1000)
 - Nombre d'échantillons 1
 - Vitesse d'exécution maximale.
- ♣ Relier le signal simulé à l'entrée de l'assistant DAQ.
- Enregistrer le projet, LabVIEW vous demande le nom du dernier VI créé : « Gene_sinu ».
- Tester votre programme en appuyant sur le mode « Exécution Unique ». La diode s'allume et s'éteint 10 fois.

Fermer tout.




Programmation par tâches

Exemple 2: E/S analogiques

 On se ramène à la caractérisation d'une diode dont on mesure V₂=f(V₁).

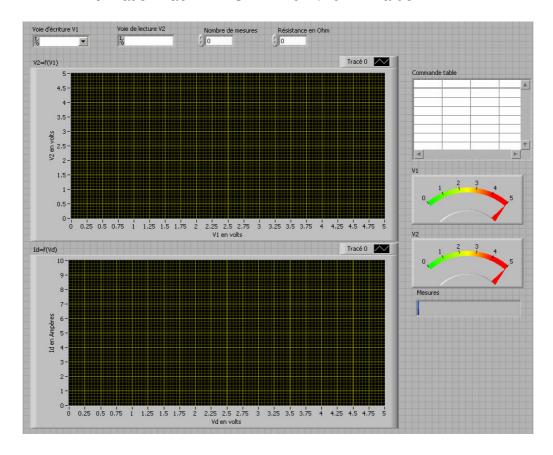
- \triangleright acquisition du signal brut $V_2=f(V_1)$
- \triangleright traitement, calcul de $I_d=g(V_d)$
- > représentation graphique
- > enregistrement d'une série de valeurs
- Lecture d'une mesure précédemment réalisée

On aura 3 Vis :

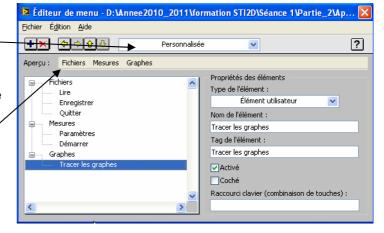
- Lire.vi : lecture du fichier tableur.
- Enregistrer.vi : enregistrer un fichier tableur (V₁, V₂, I_d et V_d).
- VI principal nommé Acquisition DEL.VI
- Sur la page de démarrage, choisir Nouveau → Projet vide
- Faite Fichier → Enregistrer (ou CTRL+s) et donner le nom du projet : « Application DEL »
- ♣ Sur le Poste de travail, avec un clic droit choisir Nouveau → VI
- Un VI s'ouvre, faite Fichier → Enregistrer (ou CTRL+s) et donner le nom du programme : Acquisition_DEL
- Proj★: Application DEL.lvproj

 Poste de travail

 Acquisition_DEL.vi


 Dépendances

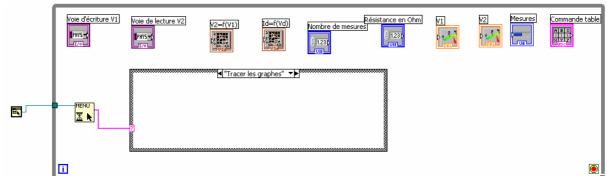
 Spécifications de construction
- \clubsuit Sur la face avant, ajouter « une table » dans Moderne \rightarrow Liste et table.
- ♣ Faite un clic droit sur la table et sélectionner Eléments visibles → En-têtes des colonnes.
- ♣ Ajouter deux vumètres « V1 » et « V2 » dans Moderne → Numériques et régler le maxi à 5.
- lacktriangle Ajouter une barre de progression horizontale « Mesures » dans Moderne ightarrow Numériques
- ♣ Ajouter deux graphes XY « V2=f(V1) » et « Id=f(Vd) dans Moderne → Graphe
- ♣ Ajouter deux voies physiques DAQmx « Voie d'écriture V1 » et « Voie de lecture V2 »dans Moderne → E/S → Commande nom DAQmx.
- ♣ Il faut changer le filtrage de la voie d'écriture car LabVIEW propose par défaut une entrée analogique pour cela, faire un clic droit sur la voie physique « Voie d'écriture V1 » et choisir Filtrage du nom E/S ... et choisir dans Type E/S : sortie analogique.
- ♣ Ajouter deux commandes « Résistance en ohm » et « Nombre de mesures » numériques (Moderne → Numérique, ils sont implicitement du type double, il faut les convertir en entier : faire un clic droit puis représentation et choisir U32)



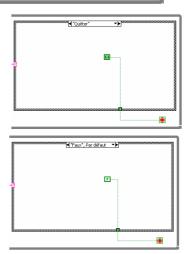
Création du menu d'exécution.

- On choisit Edition → Menu d'exécution
- On choisit « Personnalisée » dans le menu déroulant à la place de « Par défaut »
- On créer le menu en complétant le nom de l'élément (le tag correspond au texte qui sera testé dans le vi principal) puis on ajoute et décale les différents éléments.
- La ligne aperçu permet de visualiser comment sera le menu de l'exécutable.
- On enregistre le fichier *.rtm en cliquant sur Fichier → enregistrer (donner le nom Application_DEL) puis fermer l'éditeur.
- Répondre oui à la question « Changer le menu d'exécution en Application_DEL.rtm ».

Remarque : Le programme principal consiste à déterminer si l'utilisateur a sélectionné un élément de la barre menu, la structure repose donc sur une boucle while qui scrute l'élément sélectionné : lorsqu'un élément est sélectionné (test avec une structure condition), on active l'appel d'un VI secondaire correspondant.


- **Sur le diagramme**, ajouter l'objet : « Barre de menu du VI actuel » dans Programmation → dialogue et interface utilisateur → Menu
- ♣ Créer la boucle WHILE dans Programmation
 → Structures
- ♣ Ajouter l'objet : « Elément de menu sélectionné » dans Programmation → dialogue et interface utilisateur → Menu. Relier l'entrée « Référence menu » à la sortie correspondante de la barre de menu.
- **♣** Créer la boucle condition dans Programmation → Structures
- Relier la sortie « tag d'élément » au test de la boucle condition
- ♣ Editer chaque condition du menu pour cela remplacer le texte « Vrai » par « Lire » puis ajouter une condition après en faisant un clic droit sur « Lire » et taper la deuxième condition « Enregistrer » et refaire la même manipulation pour « Quitter », « Paramètres », « Démarrer » et « Tracer les graphes ».

Remarque : il faut laisser la condition « FAUX (par défaut) » qui correspondra a ce que doit faire le programme si rien dans le menu n'a été sélectionné.



QUITTER

- ◆ Dans la condition « Quitter » du VI « Application_DEL » créer une constante VRAIE dans Programmation → Booléen
- ♣ Relier cette constante à la condition d'arrêt de la boucle While

FAUX (par défaut)

- Dans la condition « FAUX » du VI « Application_DEL » créer une constante FAUX dans Programmation → Booléen
- ♣ Relier cette condition au même carré de la boucle condition de sortie précédent.
- Faire un clic droit sur ce carré et choisir « Utiliser la valeur par défaut si non câblé ».(Comme cela, quelque soit la condition, la valeur sera fausse sauf si elle est spécifiée dans une condition comme dans « Quitter »par exemple)

LIRE

- Faire Fichiers → Nouveau VI
- **Sur la face avant**, ajouter « une table » dans Moderne → Liste et table.

 Refrum Cmde
- ♣ Ajouter refnum de commande dans Moderne → Refnum lié à la table (pour cela, à l'aide du bouton droit, faire « sélectionner la classe VI serveur / générique / ObjetG / Commande / table » (l'icône de refnum a changé)
- **Sur le diagramme**, changer la table en écriture pour cela faire un clic droit sur la table et choisir « Changer en indicateur »
- ♣ Ajouter la fonction « Lire un fichier tableur » dans E/S sur fichiers
- Changer le type de fichier lu dans le menu déroulant en choisissant « Chaîne ».
- ♣ Créer une boite de dialogue de fichier (Programmation → E/S sur fichier → Fonctions de fichiers avancés).
- ♣ Créer 3 constantes de chaines : « *.del », « del» et «Ouvrir le fichier de mesures ».
- ♣ Relier la constante « *.del» à l'entrée « filtre(tous les fichiers) », la constante « del » à l'entrée « étiquette du filtre » et la constante «Ouvrir le fichier de mesures » à l'entrée « Message »
- Remplissage de la table :
 - ➤ La première ligne du fichier lu, correspond aux en-têtes des colonnes de la table, pour cela nous allons utiliser la fonction « supprimer une portion de tableau » dans Programmation → Tableau.
 - > Relier la sortie « Toutes les lignes » à l'entrée « Tableau » de la fonction précédente.
 - Créer une constantes = à 0 dans Programmation → Numériques.
 - Relier cette constante à l'entrée « Indice (ligne) »

*.del

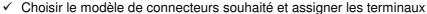
del

Ouvrir le fichier de mesures

Boîte de dialogue

de fichier chemin sélectionni

Lire


DEL

Commande table

- La partie supprimée sera les en-têtes du tableau et le reste sera les valeurs de la table.
- Pour remplir la table, relier la sortie « tableau sans le soustableau » à l'indicateur « table »
- ➤ Pour remplir les en-têtes des colonnes, il faut créer un nœud de propriété « Chaîne d'en-tête de colonne [] » en choisissant Nœud de Propriété dans Programmation → Contrôle d'applications.
- > Relier le refnum à l'entrée Référence
- Choisir la propriété « Chaîne d'en-tête de colonne [] » en faisant un clic droit sur propriété.
- Changer ce nœud de propriété en écriture
- Relier la partie supprimée à ce nœud de propriété.

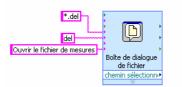
Création du sous-vi :

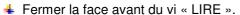
- Sur la face avant, créer les connecteurs :
 - ✓ Cliquer avec le bouton droit sur l'icône en haut à gauche et choisir « Visualiser les connecteurs »

✓ Relier la table au connecteur de droite, pour cela lorsque la bobine est sur l'icône, cliquer sur le connecteur de droite puis sur l'indicateur « table » de la face avant. (le connecteur devient rose avec une bordure épaisse car c'est un indicateur que le sous-vi renvoie et qu'il contient des chaînes)

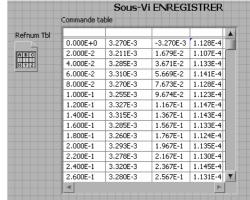
Chaîne

Refnum Tbl


- ✓ Relier le refnum de la table à gauche. (le connecteur devient vert avec une bordure normale car c'est une commande que le sous-vi a besoin et qu'il contient une référence)
- Créer l'icône : Cliquez avec le bouton droit sur l'icône de la face avant ou sur l'icône du diagramme et choisir « Editer l'icône »
- ♣ Enregistrer votre VI (Ctrl + s) et donner le nom « LIRE »
- Dans la condition « Lire » du VI « Application_DEL » faire glisser le sous-vi Lire de l'explorateur de projet.
- ♣ Créer une variable locale sur la commande table.
- Relier la sortie du sous-vi à cette variable.
- ♣ Créer une référence de VI serveur dans Programmation
 → Contrôle d'applications.
- Changer le référence avec un clic gauche et choisir Panneau → commande table
- ♣ Relier-la à l'entrée du sous-vi.
- Tester ce sous-vi en appuyant sur le mode « Exécution Unique », faire Fichiers/Lire et choisir le fichier test_lire.del
- Pour sortir, faire Fichiers/Quitter



ENREGISTRER


- Faire Fichiers → Nouveau VI
- Faire glisser de la face avant du VI « Lire » la table vers la face avant de ce nouveau VI.
- ♣ Faire glisser du diagramme du VI « lire » la boite de dialogue de fichier avec toutes ces constantes de chaînes vers le diagramme de ce nouveau VI.
 Sous-VI ENREGIS

Commande table

♣ Ajouter refnum de commande dans Moderne → Refnum lié à la table (pour cela, à l'aide du bouton droit, faire « sélectionner la

Page 6/11

Boîte de dialogue

de fichier

chemin sélectionn.

*.del

del

Donner le nom du fichier à sauver sans

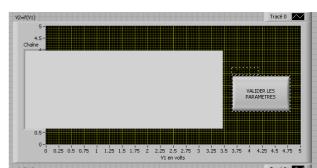
Refnum Tbl

extension

Commande table

classe VI serveur / générique / ObjetG / Commande / table » (l'icône de refnum a changé)

- Sur le diagramme, changer la constante « Ouvrir le fichier de mesures » en « Donner le nom du fichier à sauver sans extension »
- Changer la table en lecture pour cela faire un clic droit sur la table et choisir « Changer en commande »
- ♣ Créer un nœud de propriété « Chaîne d'en-tête de colonne [] » en choisissant Nœud de Propriété dans Programmation → Contrôle d'applications.
- Relier le refnum à l'entrée Référence
- Choisir la propriété « Chaîne d'en-tête de colonne [] » en faisant un clic droit sur propriété.
- ♣ Ajouter la fonction « Construire un tableau » dans Programmation →Tableaux.
- Etirer cette fonction pour avoir la possibilité de câbler deux entrées
- Relier en premier le nœud de propriété et en deuxième la commande table.
- Ajouter la fonction « Ecrire dans un fichier tableur » dans E/S sur fichiers
- Relier la commande de table à l'entrée « données 2D » et le chemin sélectionné à l'entrée « Chemin du fichier ».
- Création du sous-vi :
 - Sur la face avant, créer les connecteurs :
 - ✓ Cliquer avec le bouton droit sur l'icône en haut à gauche et choisir « Visualiser les connecteurs »
 - ✓ Choisir le modèle de connecteurs souhaité et assigner les terminaux
 - Relier la table au connecteur bas de gauche, pour cela lorsque la bobine est sur l'icône, cliquer sur le connecteur bas de gauche puis sur l'indicateur « table » de la face avant.
 - Relier le refnum au connecteur haut de gauche, pour cela lorsque la bobine est sur l'icône, cliquer sur le connecteur bas de gauche puis sur l'indicateur « refnum» de la face avant.
 - Créer l'icône : Cliquez avec le bouton droit sur l'icône de la face avant ou sur l'icône du diagramme et choisir « Editer l'icône »
- Enregistrer votre VI (Ctrl +s) et donner le nom « REC »
- Fermer ce sous-vi.
- Dans la condition « Enregistrer » du VI « Application_DEL » faire glisser le sous-vi REC de l'explorateur de projet.
- Déplacer la commande table dans cette condition.
- Relier cette variable à l'entrée du sous-vi.
- ♣ Créer une référence de VI serveur dans Programmation → Contrôle d'applications.
- ♣ Changer le référence avec un clic gauche et choisir Panneau → commande table
- Relier-la à l'entrée du sous-vi.
- ♣ Tester ce sous-vi en appuyant sur le mode « Exécution Unique », faire Fichiers/Enregistrer et donner le nom du fichier « test rec »
- Pour sortir, faire Fichiers/Quitter


Commande table Table Commande table REC del

REC

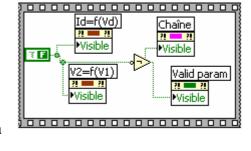
del

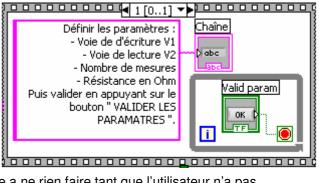
PARAMETRES

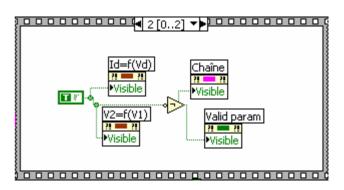
Pour cette condition, nous allons cacher les graphes, afficher un indicateur de chaîne qui stipule qu'il faut définir les paramètres ainsi qu'un bouton « Valider les paramètres » puis une fois que l'utilisateur à valider les paramètres, on cache la chaîne et le bouton et on affiche a nouveau les graphes. Pour cela, il y a trois étapes d'où une structure séquence déroulé.

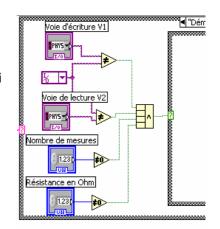
- **Sur la face avant** du VI « Application_DEL », ajouter sur le graphe un indicateur de chaîne (Moderne → Chaine et chemin) et un bouton « Valider les paramètres » (Moderne → Booléen) ,
- **Sur le diagramme** du VI « Application_DEL », dans la condition « Paramètres », créer la structure séquence empilée dans Programmation → Structures
- Créer 4 nœuds de propriétés « visible » sur le graphe « V2=f(V1) », « Id=f(Vd) », « Chaîne » et « Valider les paramètres » en faisant clic droit sur chaque variable puis Créer → Nœud de propriété → Visible.
- Changer ces 4 propriétés en écriture.
- ♣ Créer une constante FAUX dans Programmation → Booléen et relier la aux propriétés « V2=f(V1) » et « Id=f(Vd) »
- ♣ Créer une porte NON dans Programmation → Booléen et relier la aux propriétés« Chaîne » et « Valider les paramètres »
- Ajouter une étape après.
- Créer une constante de chaîne :

Définir les paramètres :


- Voie de d'écriture V1
- Voie de lecture V2
- Nombre de mesures
- Résistance en Ohm

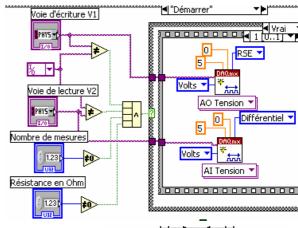

Puis valider en appuyant sur le bouton « VALIDER LES PARAMATRES ».


- ♣ Créer la boucle WHILE dans Programmation → Structures
- dans cette boucle et relier le à la condition de fin de la boucle While (le programme restera dans cette boucle a ne rien faire tant que l'utilisateur n'a pas appuyé sur le bouton).
- Ajouter une étape après.
- Aller dans l'étape 0, sélectionner tous les éléments de cette étape, appuyer sur CTRL et faite les glisser en dehors de la condition (on vient de créer une copie)
- Aller dans l'étape 2, sélectionner les éléments précédemment copiés et glisser (sans les copier) dans cette étape.
- Cliquer sur la condition Faux pour la mettre en VRAI (les graphes s'affichent et le bouton « Valid param » et la « Chaîne » se masquent)
- Dans le diagramme , aller sur le bouton et faire « Masquer la commande »
- ♣ Aller sur l'indicateur de chaîne et faire « Masquer l'indicateur »
- Enregistrer le projet.
- ♣ Pour sortir, faire Fichiers/Quitter

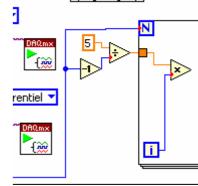

DEMARRER

Dans un premier temps, il faut vérifier que les paramètres ont été choisi sinon le programme va bloquer. Pour cela on va mettre une condition qui testera si « Voie de d'écriture V1 » \neq « » ET « Voie de lecture V2 » \neq « » ET « Nombre de mesures » \neq 0 ET « Résistance en Ohm » \neq 0. SI c'est VRAI, on fait les mesures et on rempli la table. SI c'est FAUX, on ouvre une boite de dialogue qui affiche : il faut définir les paramètres en choisissant « Mesures/Paramètres ».

- Sur le diagramme du VI « Application_DEL », dans la condition « Démarrer », créer la boucle condition dans Programmation → Structures
- ♣ Créer une constante de « voie Physique DAQmx » dans E/S de mesures → DAQmx-Acquisition de données → DAQmx-Avancées → DAQmx-Constantes et nœuds de propriétés
- ♣ Ajouter 2 comparaisons « ≠ » dans Programmation → Comparaison
- **♣** Ajouter 2 comparaisons « ≠ 0 » dans Programmation → Comparaison
- ♣ Ajouter un opérateur arithmétique dans Programmation →Booléen. Etirer le pour avoir 4 entrées. Changer de mode en ET (clique gauche sur le signe V de l'opérateur)
- Relier tous les éléments.
- Dans la condition FAUX, ajouter « une boite de dialogue à un bouton » dans Programmation → Dialogue et interface utilisateur puis créer comme message, une constante de texte « Impossible de faire les mesures, vous devez définir les paramètres en choisissant dans le menu "Fichiers/Paramètres" ».



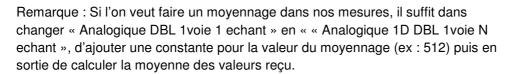
0000000000000000000000

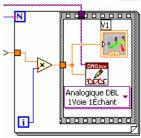

ommande table

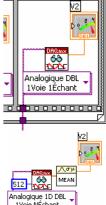
♣ Dans la condition VRAI, il faut dans un premier temps vider la table (effacer les dernières mesures) puis faire les mesures et remplir la table.

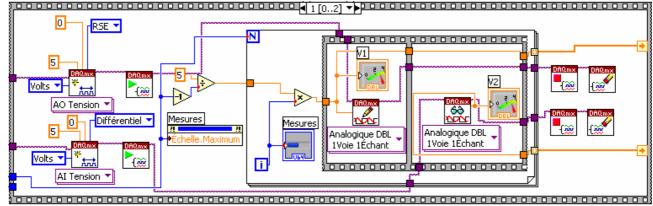
- Pour cela, ajouter une structure séquence empilée dans Programmation → Structures
- Créer une constante de tableau dans Programmation → Tableau
- ➤ Créer une constante de chaîne dans Programmation → Chaîne et faite là glisser dans la constante de tableau
- > Ajouter une dimension au tableau (clic droit sur l'afficheur d'indice)
- Créer une variable locale sur la commande table.
- > Relier le tableau vide à cette variable locale.
- Ajouter une étape après
- Créer deux voies virtuelles « A0 tension » (sortie analogique : tension) et « AI tension » (entrée analogique : tension) dans E/S mesures → DAQmx-Acquisition de données puis les constantes nécessaires :
 - Voie physique à relier à la voie en dehors de la condition
 - Unités : faire bouton droit sur l'entrée puis créer une constante = volts
 - Valeur maximale : faire bouton droit sur l'entrée puis créer une constante =
 - Valeur minimale : faire bouton droit sur l'entrée puis créer une constante = 0
 - Configuration du terminal : faire bouton droit sur l'entrée puis créer une constante = RSE pour la sortie et DIFFERENTIEL pour l'entrée.

- ➤ Créer deux « Démarrer la tache » dans E/S mesures → DAQmx-Acquisition de données, relier chaque entrée à chaque sortie « tâche en sortie » de chaque voie virtuelle.
- ➤ Ajouter une boucle FOR dans Programmation → Structures
- Relier « Nombre de mesures » à N de la boucle FOR
- ➤ Créer une constantes = à 5 (DBL) dans Programmation → Numériques
- Ajouter les opérateurs « ÷ », « -1 » et « X » dans Programmation → Numériques pour calculer les pas.
- ➤ Relier les éléments pour calculer (5/(Nombre de mesures -1))*i



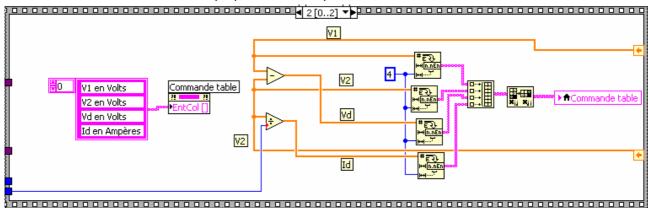



- Ajouter une structure séquence déroulée dans Programmation → Structures
- ➤ Dans la première étape, ajouter la fonction DAQmx-écrire E/S mesures → DAQmx-Acquisition de données, relier l'entrée à la sortie « tâche en sortie » de « Démarrer la tâche » (AO tension), relier la sortie du calcul précédent à l'entrée « données ».
- Faire glisser le vumètre V1 dans cette étape et relier le à l'entrée « données ».


- ➤ Dans la deuxième étape, ajouter la fonction DAQmx-lire dans E/S mesures
 → DAQmx-Acquisition de données, relier l'entrée à la sortie « tâche en sortie » de « Démarrer la tâche » (Al tension).
- Faire glisser le vumètre V2 dans cette étape relier le à la sortie « données ».

- A droite de la boucle FOR, ajouter deux fois la fonction « Arrêter la tâche » dans E/S mesures → DAQmx-Acquisition de données.
- Relier chaque tâche en sortie à la tache en entrée (il faut aller sur le carré de la boucle FOR et faire désactiver l'indexation avec le clic droit)
- > ajouter deux fois la fonction « Sup. la tâche » dans E/S mesures → DAQmx-Acquisition de données.
- > Relier chaque tâche en sortie à la tache en entrée.
- Ajouter deux variables de séquence sur la barre verticale de droite de l'étape (clic droit)
- Relier V1 à la première et V2 à la deuxième.
- Relier la barre de progression « Mesures » à l'indice i de la boucle. Il faut transformer la barre en U64 car on peut faire plus de 255 mesures (clic droit Représentation).
- Créer un nœud de propriété « Echelle Maximum » en faisant un clic droit sur la barre puis Créer → Nœud de propriété → Echelle → Gamme → Maximum.

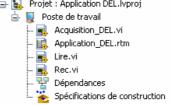
- > Ajouter une étape après à la séquence empilée.
- Nous allons calculer Vd=V1-V2 et Id = V2/R, pour cela ajouter les opérateurs « ÷ » et « » dans Programmation → Numériques
- > Relier les différents éléments
- ➤ Ajouter 4 fois la fonction « Nombre en chaîne exponentielle » (Programmation → Chaîne → Conversion chaîne/nombre)
- ➤ On prendra 4 chiffres significatifs. Pour cela créer une constante = à 4 (Programmation → Numériques) que l'on reliera à l'entrée « Précision (6) » des convertisseurs.
- ➤ Ajouter la fonction « Construire un tableau » dans Programmation →Tableaux.



/2**≓**(V1)

- Etirer cette fonction pour avoir la possibilité de câbler quatre entrées
- Relier V1, V2, Vd et Id
- Ajouter la fonction « Transposer un tableau 2D » dans Programmation → Tableaux.
- Relier ce nouveau tableau à une variable locale «Commande table ».
- Créer un nœud de propriété « Chaîne d'en-tête de colonne [] » en faisant un clic droit sur la commande table puis Créer → Nœud de propriété → Chaîne d'en-tête de colonne [].
- Créer une constante à cette propriété et la remplir.

- Enregistrer le projet.
- 🖊 Tester cette condition en appuyant sur le mode « Exécution Unique », faire Mesures/Paramètres puis Mesures/Démarrer


★Commande table ▶

Pour sortir, faire Fichiers/Quitter

TRACER LES GRAPHES

- Sur le diagramme du VI
 - « Application DEL », dans la condition
 - « Tracer les graphes », créer une variable locale «Commande table » et changer là en lecture.
- ♣ Ajouter la fonction « Chaîne Fract/exp en nombre » dans Programmation → Chaîne → Conversion chaîne/nombre
- ♣ Relier la variable locale à cette fonction
- ♣ Ajouter la fonction « Indexer » dans Programmation → Tableau
- Etirer la pour pouvoir Indexer 4 valeurs.
- ♣ Créer 4 constantes = à 0, 1, 2 et 3 et relier à l'entrée « Indice (col) »
- ♣ Ajouter deux fonctions « Assembler » dans Programmation → Cluster et Variant
- Faite glisser les deux graphes dans cette condition et relier les différents éléments
- Enregistrer le projet.
- Tester cette condition en appuyant sur le mode « Exécution Unique », faire Mesures/Paramètres puis Mesures/Démarrer puis Graphes/Tracer les graphes
- ♣ Pour sortir, faire Fichiers/Quitter

VOTRE PREMIERE APPLICATION COMPLETE EST TERMINEE 🖃 队 Projet : Application DEL.lvproj Le projet aura la forme suivante : 💟 🛮 Poste de travail

