Exercice 1 : Règle des 4P : Plus Plat Plus Près

Présentation du problème :

On souhaite vérifier la règle des 4P : la face la plus plane de la lentille doit être disposée du côté de l'image, si celle-ci est plus proche de la lentille que l'objet, ou du côté de l'objet, si celui-ci est plus proche de la lentille que l'image.

Pour cela nous allons analyser une lentille unique (singlet lens) convexe-plane, de rayon de courbure de 25 mm en verre N-BK7. La solution finale doit tenir compte des contraintes et spécifications suivantes :

- Objet à l'infini
- Angles de champ 0°.
- Longueur d'onde : 632.8 nm
- Épaisseur de la lentille au centre : 10 mm
- Diamètre de pupille d'entrée 30 mm.

Questions :

- 1. Renseigner les paramètres du système, dont ouverture, unités de lentille, champs et longueurs d'onde.
- 2. Entrer les données de la lentille (plan- convexe) et l'image à 50 mm.
- Visualiser les différents tracés (7 Rayons, toutes les longueurs d'ondes et la couleur suivant la longueur d'onde) et déterminer la longueur ∆I des aberrations géométriques longitudinales puis enregistrer sous Exo1a.

- 4. Entrer les données de la lentille (convexe-plan) et l'image à 50mm.
- Visualiser les différents tracés (7 Rayons, toutes les longueurs d'ondes et la couleur suivant la longueur d'onde) et déterminer la longueur ∆l des aberrations géométriques longitudinales puis enregistrer sous Exo1b. Conclure.

Etant donné que l'objet vient de l'infini, donc l'image est plus proche de la lentille que l'objet. Il faut donc placer la face plane de la lentille face à l'image pour faire une meilleure utilisation de la lentille et avoir le moins d'aberrations géométriques longitudinales.

Exercice 2 : Interféromètre

Dans cette partie, nous allons simuler un interféromètre Mach-Zender. Pour cela, nous allons nous mettre en mode non-séquentiel.

Dans un premier temps, nous allons régler les paramètres de simulation.

- 1. Vous allez mettre une longueur d'onde d'un laser rouge He-Ne dans Wavelength.
- 2. Vous allez aussi modifier les paramètres de calcul comme la capture d'écran ci-contre.
- 3. Le système va être composé :
 - d'une source ellipse (où la longueur et la largeur seront égales à 10 mm donc cela correspondra à une source circulaire). On tracera que 100 rayons (Layout Rays) par contre pour les calculs on prendra 300 000 rayons (Analysis Rays)
 - De deux séparatrices (on utilisera Polygon object puis splitter.pob qui correspond à une séparatrice 50/50 polarisante), le matériau sera du N-BK7 de coté 16 mm (Scale).
 - Deux miroirs rectangulaires de dimensions 15*15mm².
 - Un détecteur rectangulaire 12*12mm² de 100*100 pixels² ayant comme matériau ABSORB.
 - 4 Les éléments seront placés suivant le schéma suivant :

Sy	ystem Explorer 🕐	•
Ŧ	Wavelengths	
	Preset:	
	HeNe (.6328)	`
	Select Preset	
	 Wavelength 1 (0.6328 um, Weight = Add Wavelength 	: 1.0)
Þ	Environment	
Þ	Polarization	
۲	Advanced	
۲	Material Catalogs	
•	Non-Sequential	
	Maximum Intersections Per Ray:	
	100	
	Maximum Segments Per Ray:	
	2000	
	Maximum Nested/Touching Objects	5:
	5	
	Maximum Source File Rays In Memo	ory:
	1000000	
	Minimum Relative Ray Intensity:	
	1.0000E-004	
	Minimum Absolute Ray Intensity:	
	0.0000E+000	
	Glue Distance In Lens Unit:	
	1.0000E-006	
	Missed Ray Draw Distance In Lens U	Jnit:
	0.0000E+000	
	Simple Ray Splitting	
	✓ Retrace Source Rays Upon File O	pen

TSO

TD

4. Quel est la particularité du laser pour voir des interférences ?

Ipdate: All Windows 🔹 💽 🙆 💺 🔍 🕷	r X										Ŧ
) 🐚 🎞 🖬	CAD 🗸	Z - 🚫 🧲	📃 💲 🕶 🖻	0						
Object 1 Properties 🔇 📎		Configuration 1/1 🔇 📎									
Object Type Comment	X Positio	Y Position	Z Position	Tilt About X	Tilt Abo	Tilt Abou	Material	# Layout	# Analysis	Power(V	Waven
Source Ellipse 🔻	0,000	0,000	0,000	0,000	0,000	0,000	-	100	300000	1,000	0
Polygon Object 🔹 splitter.P	0,000	0,000	20,000	-45,000	0,000	0,000	N-BK7	16,000	1		
Polygon Object 🔹 splitter.P	0,000	-60,000	120,000	-45,050	0,000	0,000	N-BK7	16,000	1		
Rectangle 🔻	0,000	0,000	120,000	-45,000	0,000	0,000	MIRROR	15,000	15,000		
Rectangle 🔻	0,000	-60,000	20,000	-225,000	0,000	0,000	MIRROR	15,000	15,000		
Detector Rectangle 🔻	0,000	-60,000	160,000	0,000	0,000	0,000	ABSORB	12,000	12,000	100	100
•											•
12,0 -	_					Solid •	• 🖋 📓 🛛		Line Thickness	• 🕜	

8. Modifier l'angle de la deuxième séparatrice à -45.005.Retracer les rayons. Que remarquez-vous, justifier.

<u>Réponse</u> :

Le pas des franges augmente. On change légèrement le chemin optique d'un des deux rayons, ce qui a pour effet de modifier le pas des franges. Plus les deux chemins optiques ont une distance proche, plus le pas des franges augmente.

TSO

TD

ect 1 Properties 🔇 📎		Configuration 1/1 🔇 🕥								
Object Type Comment	X Positio Y Position	Z Position	Tilt About X	Tilt Abo	Tilt Aboı	Material	# Layout	# Analysis	Power(V	Waven
Source Ellipse 🔻	0,000 0,000	0,000	0,000	0,000	0,000	-	100	300000	1,000	0
Polygon Object 🔻 splitter.P	0,000 0,000	20,000	-45,000	0,000	0,000	N-BK7	16,000	1		
Polygon Object 🔻 splitter.P	0,000 -60,000	120,000	-45,005	0,000	0,000	N-BK7	16,000	1		
Rectangle 🔻	0,000 0,000	120,000	-45,000	0,000	0,000	MIRROR	15,000	15,000		
Rectangle 🔻	0,000 -60,000	20,000	-225,000	0,000	0,000	MIRROR	15,000	15,000		
etector Rectangle 🔻	0,000 -60,000	160,000	0,000	0,000	0,000	ABSORB	12,000	12,000	100	100
٠										•
3: Detector Viewer 2 ×			₹ _	1: NSC Sh	aded Mode	x IX				Ŧ
12,0 -12,0 -12,0 -12,0 X coordinate val Detector Image:	Coherent 1 0,185 0,185 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,165 0,128 0,037 0,031 0,031 0,031 0,031 0,031 0,031 0,031 0,031 0,015 0,185 0,018 0,0000000000	Zemax ax OpticStudio 15.	5							